Kāinga / FAQ

FAQ

kua whakarāpopotohia e matou etahi raruraru noa

production

  • Q.

    Ka mahia e koe nga hua kua whakaritea?

    A.

    Ae. Ka whakaratohia e matou ki nga kaihoko nga otinga OEM / ODM. Ko te rahinga ota iti OEM he 10,000 nga waahanga.

  • Q.

    Me pehea koe ki te kohikohi i nga hua?

    A.

    Ko ta matou kikii ma nga ture a te Kotahitanga o nga Whenua o te Ao, ka taea hoki e matou te whakarato kete motuhake kia rite ki nga whakaritenga a nga kaihoko.

  • Q.

    He aha te momo tiwhikete kei a koe?

    A.

    Kei a matou ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Ka whakaratohia e koe he tauira kore utu?

    A.

    Ka whakaratohia e matou nga pākahiko me te mana kaore e neke atu i te 10WH hei tauira kore utu.

  • Q.

    He aha to kaha whakaputa?

    A.

    120,000-150,000 nga waahanga ia ra, he rereke te kaha o ia hua, ka taea e koe te korero mo nga korero taipitopito e ai ki te imeera.

  • Q.

    Kia pehea te roa ki te whakaputa?

    A.

    Tata ki te 35 ra. Ko te wa motuhake ka taea te whakarite ma te imeera.

  • Q.

    Kia pehea te roa o to wa whakaputa tauira?

    A.

    E rua wiki (14 nga ra).

He mea anō (kōrerohia mai he aha te horopaki)

  • Q.

    He aha nga tikanga utu?

    A.

    Ko te tikanga ka whakaaehia e matou te 30% te utu o mua hei putea me te 70% i mua i te tukunga hei utu whakamutunga. Ko etahi atu tikanga ka taea te whiriwhiri.

  • Q.

    He aha nga tikanga tuku?

    A.

    Ka whakaratohia e matou: FOB me CIF.

  • Q.

    He aha te tikanga utu?

    A.

    Ka whakaaetia e matou te utu ma te TT.

  • Q.

    Ko wai nga maakete kua hokona e koe?

    A.

    Kua haria e matou nga taonga ki Northern Europe, Western Europe, North America, Middle East, Asia, Africa, me etahi atu waahi.

hangarau

  • Q.

    He aha te pākahiko?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    He aha nga rereketanga i waenga i nga pākahiko tuatahi me nga pākahiko tuarua?

    A.

    Ko te rereketanga nui ko te rereke o nga rauemi kaha. Ko nga mea kaha o te pākahiko tuarua ka taea te huri, engari ko nga mea kaha o te pākahiko tuatahi kaore. He iti ake te tukunga whaiaro o te pākahiko tuatahi i to te pākahiko tuarua. Heoi, he nui ake te parenga o roto i tera o te pākahiko tuarua, no reira he iti ake te kaha o te uta. I tua atu, ko te kaha o te papatipu-motuhake me te kaha-nui-a-roto o te pākahiko tuatahi he mea nui ake i era o nga pākahiko rechargeable e waatea ana.

  • Q.

    He aha te tikanga matū hiko o nga pākahiko Ni-MH?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    He aha te tikanga matū hiko o nga pākahiko lithium-ion?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    He aha nga paerewa e whakamahia ana mo nga pākahiko?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    He aha te hanganga matua o te pākahiko Ni-MH?

    A.

    Ko nga waahanga matua o nga papahiko nickel-metal hydride he pepa hiko pai (nickel oxide), he peera hiko kino (he koranu rokiroki hauwai), electrolyte (ko te nuinga KOH), pepa diaphragm, mowhiti hiri, potae hiko pai, keehi pākahiko, aha atu.

  • Q.

    He aha nga waahanga hanga matua o nga pākahiko lithium-ion?

    A.

    Ko nga waahanga matua o nga pākahiko lithium-ion ko nga uhi o runga me te raro o te pākahiko, he pepa hiko pai (he mea kaha ko te lithium cobalt oxide), he whakawehe (he membrane hiato motuhake), he electrode kino (he waro te mea hohe), electrolyte organic, take pākahiko. (kua wehewehea kia rua nga momo anga rino me te anga konumohe) me etahi atu.

  • Q.

    He aha te parenga o roto o te pākahiko?

    A.

    E tohu ana ki te parenga e pa ana ki te ia e rere ana i roto i te pākahiko i te wa e mahi ana te pākahiko. Kei te tito o ohmic ātete ā-roto me polarization ātete ā-roto. Ko te nui o te aukati o roto o te pākahiko ka whakaiti i te ngaohiko mahi tukunga o te pākahiko me te whakapoto i te wa tuku. Ko te parenga o roto kei te nuinga o te paanga o te papanga pākahiko, te mahi hangahanga, te hanganga pākahiko, me etahi atu mea. He tawhā nui hei ine i te mahinga o te pākahiko. Tuhipoka: Ko te tikanga, ko te parenga o roto i roto i te ahua kua tohua ko te paerewa. Hei tātai i te ātete ā-roto o te pākahiko, me whakamahi he mita ātete ā-roto motuhake hei utu i te mita maha i te awhe ohm.

  • Q.

    He aha te ngaohiko ingoa?

    A.

    Ko te ngaohiko ingoa o te pākahiko e pa ana ki te ngaohiko e whakaatuhia ana i te wa e mahi ana. Ko te ngaohiko ingoa o te pākahiko nickel-cadmium nickel-hydrogen tuarua he 1.2V; te ngaohiko ingoa o te pākahiko lithium tuarua ko 3.6V.

  • Q.

    He aha te ngaohiko iahiko tuwhera?

    A.

    Ko te ngaohiko ara iahiko tuwhera e pa ana ki te rereketanga pea i waenga i nga hiko pai me te kino o te pākahiko i te wa e kore e mahi te pākahiko, ara, karekau he ia e rere ana i te ara iahiko. Ko te ngaohiko mahi, e kiia ana ko te ngaohiko kāpeka, e pa ana ki te rereketanga pea i waenga i nga pou pai me te kino o te pākahiko i te wa e mahi ana te pākahiko, ara, i te wa e nui ana te awa i te ara iahiko.

  • Q.

    He aha te kaha o te pākahiko?

    A.

    Kua wehea te kaha o te pākahiko ki te mana kua tohua me te tino kaha. Ko te kaha o te pākahiko e tohu ana ki te whakaritenga, ki te whakapumau ranei me tuku e te pākahiko te iti rawa o te hiko i raro i etahi tikanga tuku i te wa o te hoahoatanga me te hanga o te tupuhi. Ko te paerewa IEC e kii ana ko nga pākahiko nickel-cadmium me te nickel-metal hydride ka tukuna ki te 0.1C mo nga haora 16 ka tukuna i te 0.2C ki te 1.0V i te mahana o te 20°C±5°C. Ko te kaha tohu o te pākahiko ka kiia ko C5. Ko nga pākahiko Lithium-ion e kii ana ki te utu mo nga haora 3 i raro i te pāmahana toharite, ngaohiko tonu (1C) -te ngaohiko tonu (4.2V) te whakahaere i nga tikanga tono, katahi ka tukuna i te 0.2C ki te 2.75V ka tohua te kaha o te hiko kua tukuna. Ko te kaha tonu o te pākahiko e pa ana ki te mana tuturu i tukuna e te tupuhi i raro i etahi tikanga tukunga, e pa ana te nuinga ki te tere o te tukunga me te pāmahana (ko te tino korero, ko te kaha o te pākahiko me tohu te utu me nga tikanga tuku). Ko te waeine o te kaha pākahiko he Ah, mAh (1Ah=1000mAh).

  • Q.

    He aha te toenga tukunga kaha o te pākahiko?

    A.

    Ka tukuna te pākahiko rechargeable ki te naianei nui (penei i te 1C, i runga ake ranei), na te "painga pounamu" kei roto i te reiti tohatoha o roto o te tere o naianei, kua tae te pākahiko ki te ngaohiko kāpeka i te kore e tino tukuna te kaha. , a ka whakamahi i te naianei iti penei i te 0.2C ka taea te tango tonu, tae noa ki te 1.0V/piece (nickel-cadmium me te nickel-hydrogen battery) me te 3.0V/piece (lichium battery), ko te kaha tuku ka kiia ko te kaha toenga.

  • Q.

    He aha te papa tuku?

    A.

    Ko te tüäpapa tuku o nga pākahiko rechargeable Ni-MH te tikanga e tohu ana ki te awhe ngaohiko e mau tonu ai te ngaohiko mahi o te pākahiko ka tukuna i raro i te punaha tuku motuhake. Ko tona uara e pa ana ki te ia tukunga. Ko te nui o te au, ka iti ake te taumaha. Ko te tüäpapa tuku o nga pākahiko lithium-ion ko te tikanga ka mutu te utu ina he 4.2V te ngaohiko, a he iti iho i te 0.01C te waahi i te ngaohiko tonu, ka waiho mo te 10 meneti, ka tukuna ki te 3.6V ahakoa te tere o te tuku. nāianei. He paerewa tika hei ine i te kounga o nga pākahiko.

  • Q.

    He aha te tikanga tohu mo nga pākahiko rechargeable i tohua e IEC?

    A.

    E ai ki te paerewa IEC, ko te tohu o te pākahiko Ni-MH e 5 nga waahanga. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Hei tauira, ko te HF18/07/49 e tohu ana i te pākahiko nickel-metal hydride tapawha me te whanui 18mm, 7mm, me te teitei o te 49mm. Ko te KRMT33/62HH e tohu ana i te pākahiko nickel-cadmium; ko te tere o te tukunga kei waenga i te 0.5C-3.5, raupapa teitei-teitei te pākahiko kotahi (kaore he waahanga hono), te diameter 33mm, teitei 62mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Ko te reta tuatahi: e tohu ana i nga taonga hiko kino o te pākahiko. I—e tohu ana i te lithium-ion me te pākahiko hanga-i roto; L—e tohu ana i te hiko whakarewa lithium, i te hiko koranu lithium ranei. 03) Ko te reta tuarua: e tohu ana i te rauemi cathode o te pākahiko. C—kopa-a-hikohiko; N—nickel-based electrode; M—te hiko konupora; V—Vnadium-based electrode. 04) Ko te reta tuatoru: e tohu ana i te ahua o te pākahiko. R-tohu pūhiko porotakaroa; L-tohu pūhiko tapawha. 05) Tau: Pūhiko porotakaroa: 5 tau e tohu ana i te diameter me te teitei o te awha. Ko te waeine o te diameter he mirimita, ko te rahi ko te whakatekau o te mirimita. Ina he nui ake, he rite ranei ki te 100mm tetahi diameter, teitei ranei, me tapiri he raina hauroki ki waenga i nga rahi e rua. Pūhiko tapawha: 6 tau e tohu ana i te matotoru, te whanui me te teitei o te tupuhi i roto i te mitamano. Ina he nui ake, he rite ranei ki te 100mm tetahi o nga taha e toru, me tapiri he riipene i waenga i nga ine; Mena he iti iho i te 1mm tetahi o nga taha e toru, ka tapirihia te reta "t" ki mua o tenei ine, a ko te waeine o tenei ine he kotahi hautekau o te mirimita. Hei tauira, ko te ICR18650 e tohu ana i te pākahiko lithium-ion tuarua porotakaroa; Ko te papanga cathode he cobalt, ko tona diameter kei te 18mm, ko tona teitei he 65mm. ICR20/1050. Ko te ICP083448 e tohu ana i te pākahiko lithium-ion tapawha tuarua; Ko te papanga cathode he cobalt, he 8mm te matotoru, he 34mm te whanui, he 48mm te teitei. Ko te ICP08/34/150 e tohu ana i te pākahiko lithium-ion tapawha tuarua; Ko te papanga cathode he cobalt, he 8mm te matotoru, he 34mm te whanui, he 150mm te teitei.

  • Q.

    He aha nga rauemi whakakakahu o te pākahiko?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    He aha te kaupapa o te takai pākahiko, te huihuinga, me te hoahoa?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    He aha nga ahuatanga matua o te mahi o te pākahiko tuarua i te nuinga o te waa?

    A.

    Kei roto i te nuinga o te waa te ngaohiko, te aukati o roto, te kaha, te kaha o te kaha, te pehanga o roto, te tere o te whakaheke whaiaro, te huringa ora, te mahi hiri, te mahi haumaru, te mahi rokiroki, te ahua, me etahi atu.

  • Q.

    He aha nga mea whakamatautau pono o te pākahiko?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    He aha nga taonga whakamatautau haumaru o te pākahiko?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    He aha nga tikanga utu paerewa?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    He aha te utu paerewa me te tukunga o nga pākahiko Ni-MH?

    A.

    Ko te paerewa o te ao IEC e kii ana ko te utu paerewa me te tukunga o nga pākahiko nickel-metal hydride ko: tuatahi ka tukuna te pākahiko i te 0.2C ki te 1.0V/waahanga, katahi ka utu ki te 0.1C mo te 16 haora, waiho mo te 1 haora, ka tuu. i te 0.2C ki te 1.0V/wahi, ara ki te utu me te tuku i te paerewa pākahiko.

  • Q.

    He aha te utunga patere? He aha te paanga ki te mahinga o te pākahiko?

    A.

    I te nuinga o te waa ka whakamahia te utu me te tuku, ka whakatakoto mo te 5 hēkona ka tuku mo te 1 hēkona. Ka whakaitihia te nuinga o te hāora i hangaia i te wa o te utu ki nga electrolytes i raro i te putere tuku. Ehara i te mea ka whakawhäitihia te nui o te whakapoatanga electrolyte o roto, engari ko nga pākahiko tawhito kua tino polarized ka ora ake, ka whakatata atu ranei ki te kaha taketake i muri i nga wa 5-10 o te utu me te tuku ma te whakamahi i tenei tikanga utu.

  • Q.

    He aha te utu whakaheke?

    A.

    Ka whakamahia te utu totika ki te whakaea mo te ngaronga o te kaha na te tukunga-whaiaro o te pākahiko i muri i te whakakiinga katoa. Ko te tikanga, ka whakamahia te utu o naianei ki te whakatutuki i te kaupapa o runga ake nei.

  • Q.

    He aha te pai o te utu?

    A.

    Ko te pai o te utu e pa ana ki te inenga o te kaha o te hiko i pau i te pākahiko i te wa o te utu ka huri ki te hiko matū ka taea e te pākahiko te penapena. Ko te nuinga ka pa ki te hangarau o te pākahiko me te pāmahana taiao mahi o te tupuhi—te nuinga, ko te teitei ake o te pāmahana ambient, ka iti ake te pai o te utu.

  • Q.

    He aha te pai o te tuku?

    A.

    Ko te pai o te tukunga e pa ana ki te mana tuturu ka tukuna ki te ngaohiko kapeka i raro i etahi tikanga tuku ki te kaha whakatau. Ko te nuinga o te paanga o te rerenga, te pāmahana ambient, te aukati o roto, me etahi atu mea. Ko te tikanga, ko te teitei ake o te reeti tuku, ko te teitei ake o te reeti tuku. Ko te iti o te pai o te tuku. Ko te iti o te pāmahana, ka iti ake te kaha o te tuku.

  • Q.

    He aha te mana whakaputa o te pākahiko?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    He aha te tuku-whaiaro o te pākahiko tuarua? He aha te reiti tuku-whaiaro o nga momo pākahiko rereke?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    He aha te 24-haora-whakamatautau tuku-whaiaro?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    He aha te rereketanga i waenga i te parenga o roto o te ahua kua tukuna me te parenga o roto o te ahua kua tukuna?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    He aha te parenga pateko? He aha te aukati hihiri?

    A.

    Ko te ātete ā-roto pateko ko te ātete ā-roto o te pākahiko i te wa e tukuna ana, a ko te ātete ā-roto hihiri ko te ātete ā-roto o te pākahiko i te wa e utu ana.

  • Q.

    Ko te whakamatautau aukati utu nui?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    He aha te IEC paerewa huringa ora whakamātautau?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    He aha te pehanga o roto o te pākahiko?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    He aha te whakamatautau pupuri utu paerewa?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    He aha te whakamatautau iahiko poto?

    A.

    Whakamahia he waea me te parenga o roto ≤100mΩ ki te hono i nga pou pai me te toraro o te pākahiko kua oti te whakakii ki roto i te pouaka pahū-pahū ki te porotiti-poto i nga pou pai me nga pou kino. Kaua te pākahiko e pahū, e mau ahi ranei.

  • Q.

    He aha nga whakamatautau teitei o te pāmahana me te haumākū tiketike?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    He aha te whakamatautau piki mahana?

    A.

    I muri i te whakakii katoa o te pākahiko, maka ki roto i te oumu ka whakamahana mai i te pāmahana rūma i te tere o te 5°C/min. I muri i te whakakii katoa o te pākahiko, maka ki roto i te oumu ka whakamahana mai i te pāmahana rūma i te tere o 5°C/min. Kia tae te mahana o te oumu ki te 130°C, pupuri mo te 30 meneti. Kaua te pākahiko e pahū, e mau ahi ranei. Kia tae te mahana o te oumu ki te 130°C, pupuri mo te 30 meneti. Kaua te pākahiko e pahū, e mau ahi ranei.

  • Q.

    He aha te whakamatautau paihikara pāmahana?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    He aha te whakamatautau whakaheke?

    A.

    I muri i te whakakii katoa o te pākahiko, te pākahiko pākahiko ranei, ka whakatakahia mai i te teitei o te 1m ki te raima (te sima ranei) kia toru nga wa kia puta he wiri i nga huarahi matapōkere.

  • Q.

    He aha te whakamatautau wiri?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    He aha te whakamatautau paanga?

    A.

    I muri i te whakakii katoa o te pākahiko, tuu whakapaea he rakau maro ka whakataka he ahanoa 20-pauna mai i tetahi teitei ki runga i te rakau maro. Kaua te pākahiko e pahū, e mau ahi ranei.

  • Q.

    He aha te whakamatautau urunga?

    A.

    I muri i te whakakii katoa o te pākahiko, tukuna he titi o te diameter motuhake ki te pokapū o te tupuhi ka waiho te titi ki roto i te pākahiko. Kaua te pākahiko e pahū, e mau ahi ranei.

  • Q.

    He aha te whakamatautau ahi?

    A.

    Whakanohoia te pākahiko kua oti te whakakii ki runga i te taputapu whakamahana me te uhi whakamarumaru ahurei mo te ahi, karekau he otaota ka puta i te uhi whakamarumaru.

  • Q.

    He aha nga tiwhikete kua paahitia e nga hua o te kamupene?

    A.

    Kua paahitia e ia te ISO9001: 2000 tiwhikete pūnaha kounga me te ISO14001: 2004 tiwhikete pūnaha tiaki taiao; kua whiwhi te hua i te tiwhikete EU CE me Amerika Te Tai Tokerau UL tohu, kua paahitia te whakamatautau tiaki taiao SGS, a kua whiwhi i te raihana patent o Ovonic; i taua wa ano, kua whakaaetia e te PICC nga hua a te kamupene i roto i te kaupapa o te Wherotanga o te Ao.

  • Q.

    He aha te pākahiko Riri-Ki-Whakamahi?

    A.

    Ko te pākahiko Riri-ki-te whakamahi he momo hou o te pākahiko Ni-MH me te reeti pupuri utu nui i whakarewahia e te kamupene. He pākahiko-aatete ki te rokiroki me te mahi takirua o te pākahiko tuatahi me te pākahiko tuarua ka taea te whakakapi i te pākahiko tuatahi. Arā, ka taea te hangarua te pākahiko me te nui ake o te mana e toe ana i muri i te rokiroki mo te wa rite ki nga pākahiko Ni-MH tuarua noa.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    He aha nga whakatupato ina whakamahi i te pākahiko?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    He aha te rereketanga o nga momo pākahiko rechargeable paerewa?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    He aha te tere o te tukunga o te pākahiko? He aha te tere o te tukunga o te awha?

    A.

    Ko te rerenga reiti e tohu ana ki te hononga reiti i waenga i te ia tukunga (A) me te kaha whakatau (A•h) i te wa ngingiha. Ko te tuku reiti haora e pa ana ki nga haora e hiahiatia ana ki te tuku i te kaha whakatau i te naianei whakaputanga motuhake.

  • Q.

    He aha te take me whakamahana te pākahiko i te wa e pupuhi ana i te takurua?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    He aha te awhe pāmahana whakahaere o nga pākahiko lithium-ion?

    A.

    Utu -10—45 ℃ Te tuku -30—55 ℃

  • Q.

    Ka taea te whakakotahi nga pākahiko rereke rereke?

    A.

    Mena ka whakaranua e koe nga pākahiko hou me nga pākahiko tawhito he rereke nga kaha, ka whakamahia tahi ranei, tera pea ka pakaru, karekau ngaohiko, aha atu. Na te rereke o te hiko i te wa o te utu, na reira ka nui te utu o etahi pākahiko i te wa e utu ana. Ko etahi o nga pākahiko kaore i te tino whakakiia me te kaha i te wa e tuku ana. Ko te pākahiko teitei kaore i te tino tukuna, ka mutu te tukunga o te pākahiko iti. I roto i taua porowhita nanakia, ka pakaru te pākahiko, ka turuturu, he iti ranei te ngaohiko (kore).

  • Q.

    He aha te ara iahiko poto o waho, a he aha te paanga ki te mahinga o te pākahiko?

    A.

    Ko te hono i nga pito e rua o waho o te pākahiko ki tetahi kaikawe ka puta he ara iahiko poto o waho. Ko te akoranga poto ka pa he kino mo nga momo pākahiko rereke, penei i te pikinga o te pāmahana electrolyte, te piki o te pehanga hau o roto, me etahi atu. Ko tenei ahuatanga ka tino kino te pākahiko. Ki te rahua te paera haumaru, tera pea ka pahū. No reira, kaua e porotiti poto te pākahiko ki waho.

  • Q.

    He aha nga mea matua e pa ana ki te ora o te pākahiko?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Ka taea te penapena i te pākahiko ki roto i te taputapu i muri i te paunga, ki te kore ranei e whakamahia mo te wa roa?

    A.

    Mena kaore e whakamahia e ia te taputapu hiko mo te wa roa, he pai ake te tango i te pākahiko ka tuu ki te waahi iti-mahana, maroke. Ki te kore, ahakoa kua whakawetohia te taputapu hiko, ka hanga tonu e te punaha he iti te putanga o naianei o te pākahiko, ka whakapoto i te oranga o te awha.

  • Q.

    He aha nga tikanga pai ake mo te rokiroki pākahiko? Me utu e ahau te pākahiko mo te rokiroki mo te wa roa?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    He aha te pākahiko paerewa?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    He aha nga take mo te ngaohiko kore, te ngaohiko iti ranei o te pākahiko kotahi?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    He aha nga take pea mo te ngaohiko kore, te ngaohiko iti ranei o te kete pākahiko?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    He aha nga tikanga whakahaere hei aukati i te utu nui o te pākahiko?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    He aha nga take e kore ai e taea te utu te pākahiko, te putea pākahiko ranei?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Kaore i kitea te mea e hiahia ana koe?Whakapā mai

kati_ma
tata

Tuhia he pakirehua ki konei

whakautu i roto i nga haora 6, he pai nga patai!